Hyperdeterminants as integrable discrete systems

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2009 J. Phys. A: Math. Theor. 42454023
(http://iopscience.iop.org/1751-8121/42/45/454023)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.156
The article was downloaded on 03/06/2010 at 08:21

Please note that terms and conditions apply.

Hyperdeterminants as integrable discrete systems

Sergey P Tsarev ${ }^{1,3}$ and Thomas Wolf ${ }^{2}$
${ }^{1}$ Institute of Space and Information Technologies, Siberian Federal University, Svobodnyi
Avenue, 79, 660041, Krasnoyarsk, Russia
${ }^{2}$ Department of Mathematics, Brock University, 500 Glenridge Avenue, St Catharines, Ontario L2S 3A1, Canada
E-mail: sptsarev@mail.ru and twolf@brocku.ca

Received 23 March 2009, in final form 13 July 2009
Published 27 October 2009
Online at stacks.iop.org/JPhysA/42/454023

Abstract

We give the basic definitions and some theoretical results about hyperdeterminants, introduced by A Cayley in 1845. We prove integrability (understood as 4D consistency) of a nonlinear difference equation defined by the $2 \times 2 \times 2$-hyperdeterminant. This result gives rise to the following hypothesis: the difference equations defined by hyperdeterminants of any size are integrable. We show that this hypothesis already fails in the case of the $2 \times 2 \times 2 \times 2$-hyperdeterminant.

PACS numbers: 02.30.Ik, 02.10.De
Mathematics Subject Classification: 37K10, 39A12, 15A69

1. Introduction

Discrete integrable equations have become a very vivid topic in the last decade. A number of important results on the classification of different classes of such equations, based on the notion of consistency [3], were obtained in [1, 2, 17] (cf also references to earlier publications given there). As a rule, discrete equations describe relations on the scalar field variables $f_{i_{1}, \ldots, i_{n}} \in \mathbb{C}$ associated with the points of a lattice \mathbb{Z}^{n} with vertices at integer points in the n-dimensional space $\mathbb{R}^{n}=\left\{\left(x_{1}, \ldots, x_{n}\right) \mid x_{s} \in \mathbb{R}\right\}$. If we take the elementary cubic cell $K_{n}=\left\{\left(i_{1}, \ldots, i_{n}\right) \mid i_{s} \in\{0,1\}\right\}$ of this lattice and the field variables $f_{i_{1} \ldots i_{n}}$ associated with its 2^{n} vertices, an n-dimensional discrete system of the type considered here is given by an equation of the form

$$
\begin{equation*}
Q_{n}(\mathbf{f})=0 \tag{1}
\end{equation*}
$$

Hereafter we use the short notation \mathbf{f} for the set $\left(f_{00 \ldots 0}, \ldots, f_{11 \ldots 1}\right)$ of all these 2^{n} variables. For the other elementary cubic cells of \mathbb{Z}^{n} the equation is the same, after shifting the indices of \mathbf{f} suitably.
${ }^{3}$ SPT acknowledges partial financial support from Russian Presidential grant NSh-2427.2008.1 and the RFBR grant 09-01-00762-a.

Figure 1. Square K_{2}.

Figure 2. Cube K_{3}.

The equations mostly investigated so far $[1,2,17]$ were supposed to have the following properties:
(1) Quasilinearity. Equation (1) is affine linear w.r.t. every $f_{i_{1} i_{2}, \ldots, i_{n}}$, i.e. Q has degree 1 in any of its 2^{n} variables.
(2) Symmetry. Equation (1) should be invariant w.r.t. the symmetry group of elementary cubic cell K_{n} or its suitably chosen subgroup.
On the other hand a number of interesting discrete equations which do not enjoy one or both of these properties have been found. In this publication we investigate an important class of symmetric discrete equations which do not have the quasi-linearity property and are given by the equations $H_{n}\left(f_{00 \ldots 0}, \ldots, f_{11 \ldots 1}\right)=0$, where H_{n} denotes the n-dimensional hyperdeterminant of the corresponding n-index array $\left(f_{00 \ldots 0}, \ldots, f_{11 \ldots 1}\right)$. We give the precise definition of hyperdeterminants in section 2. In the simplest two-dimensional case of the 2×2 matrix the hyperdeterminant is just the usual determinant:

$$
\begin{equation*}
H_{2}(\mathbf{f})=f_{00} f_{11}-f_{01} f_{10} \tag{2}
\end{equation*}
$$

The next nontrivial case is the three-dimensional $2 \times 2 \times 2$-hyperdeterminant:

$$
\begin{align*}
& H_{3}(\mathbf{f})=f_{111}^{2} f_{000}^{2}+f_{100}^{2} f_{011}^{2}+f_{101}^{2} f_{010}^{2}+f_{110}^{2} f_{001}^{2}-2 f_{111} f_{110} f_{001} f_{000} \\
&-2 f_{111} f_{101} f_{010} f_{000}-2 f_{111} f_{100} f_{011} f_{000}-2 f_{110} f_{101} f_{010} f_{001} \\
&-2 f_{110} f_{100} f_{011} f_{001}-2 f_{101} f_{100} f_{011} f_{010} \\
&+4 f_{111} f_{100} f_{010} f_{001}+4 f_{110} f_{101} f_{011} f_{000} \tag{3}
\end{align*}
$$

The corresponding elementary cells K_{2}, K_{3} and the field variables associated with the vertices are shown in figures 1 and 2.

The general definition of hyperdeterminants was given by Cayley [7], who also gave the explicit form (3) of the first nontrivial $2 \times 2 \times 2$-hyperdeterminant. In the last decades, following the modern and much more general approach of \mathcal{A}-discriminants [9], the theory of hyperdeterminants found important applications in quantum informatics [4], biomathematics [5], numerical analysis and data analysis [6] as well as other fields.

As one can easily see, the expressions (3.7) in [15] and (6.11) in [16], describing some discrete integrable equations, are nothing but the classical Cayley's $2 \times 2 \times 2$-hyperdeterminant (3). We prove below in section 3 that (3) is also integrable in the sense of $(n+1)$-dimensional consistency [3]:

An n-dimensional discrete equation (1) is called consistent, if it may be imposed in a consistent way on all n-dimensional faces of a $(n+1)$-dimensional cube.

We give the accurate formulation of this general consistency principle for the case of non-quasi-linear expressions similar to (3) in section 3. For the two-dimensional determinant (2) (which is quasi-linear) consistency can be established by a trivial computation; the equation
$H_{2}\left(f_{00}, f_{11}, f_{01}, f_{10}\right)=0$ is obviously linearized by the substitution $f_{i j}=\exp \tilde{f}_{i j}$. Using a result on principal minor assignment problem proved in [14] we establish a 4D consistency of the $2 \times 2 \times 2$-hyperdeterminant (3) in section 3 , cf theorem 2 below for the precise formulation.

This result gives rise to the following conjecture: the difference equations defined by hyperdeterminants of any size are integrable in the sense of $(n+1)$-dimensional consistency. Nevertheless as we show in section 4, this conjecture fails already in the case of the $2 \times 2 \times 2 \times 2$ hyperdeterminant. The computation of this 4D-hyperdeterminant turns out to be highly nontrivial (compared to the relatively simple expressions (2), (3)) and was completed only recently [13]. We report in section 4 a more straightforward and simpler computation of the same hyperdeterminant with the free symbolic computation program Form [19]. The size of this hyperdeterminant (2894276 terms, total degree 24 , degree 9 w.r.t. each of the field variables) implies that checking its 5D consistency can be done only numerically, using high-precision computation of roots of respective polynomial equations on the 4D-faces of the five-dimensional cube K_{5}. This was done using two different computer algebra systems Reduce [20] and Singular [21]. As our computations have shown (cf their description in section 4), the 4D-hyperdeterminantal equation $H_{4}(\mathbf{f})=0$ is not 5 D consistent. This non-integrability result should be investigated further since recent examples [11] show that consistency is not the only possible definition for discrete integrability. Also recent extensions of the consistency principle to the case of different equations (but of a similar form) imposed onto different n-dimensional faces of the $(n+1)$-dimensional hypercube should be considered (cf [2]).

2. The definition of hyperdeterminants and its variations

The remarkable definition of hyperdeterminants given by Cayley in 1845 [7] and still used today [9] describes the condition of singularity of an appropriate hypersurface. Let $A=\left(a_{i_{1} i_{2} \cdots i_{r}}\right)$ be a hypermatrix (an array with r indices) with $i_{s}=0, \ldots, n_{s}$. The polylinear form

$$
U=\sum_{i_{1} \cdots i_{r}} a_{i_{1} \cdots i_{r}} x_{i_{1}}^{(1)} \cdots x_{i_{r}}^{(r)}
$$

defines a hypersurface $U=0$ in $\mathbb{C} P^{n_{1}} \times \cdots \times \mathbb{C} P^{n_{r}}$. Here $x_{i_{k}}^{(k)}$ denote the homogeneous coordinates in the respective complex projective space $\mathbb{C} P^{n_{k}}$. This hypersurface is singular, i.e. has at least one point where the condition of smoothness is not satisfied iff the following set of $\left(n_{1}+1\right) \times \cdots \times\left(n_{r}+1\right)$ equations

$$
\begin{equation*}
\left\{\forall s=1, \ldots, r, \quad \forall k=1, \ldots, n_{s}, \quad \frac{\partial U}{\partial x_{i_{s}}^{(k)}}=0\right\} \tag{4}
\end{equation*}
$$

has a nontrivial solution $x_{i_{s}}^{(k)} \in \mathbb{C} P^{n_{k}}$. As one can show (cf [9]), if a certain condition (5) on the dimensions n_{k} of the array A is satisfied, elimination of the variables $x_{i_{s}}^{(k)}$ from (4) results in a single polynomial equation in the array elements $a_{i_{1} i_{2} \cdots i_{r}}: H_{r}(A)=0$. This polynomial is irreducible and enjoys practically the same symmetry properties as the usual determinant of a square matrix. Following Cayley this polynomial $H_{r}(A)$ (defined uniquely up to a constant factor) is called the hyperdeterminant of the array A. The necessary and sufficient condition of the existence of a single polynomial condition $H_{r}(A)=0$ for the hypersurface $U=0$ to be singular, i.e. the condition for the corresponding hyperdeterminant of A to be correctly defined, is as follows:

$$
\begin{equation*}
\forall k, \quad n_{k} \leqslant \sum_{s \neq k} n_{s} \tag{5}
\end{equation*}
$$

In particular, if $r=2$, so for usual $\left(n_{1}+1\right) \times\left(n_{2}+1\right)$-matrices, this condition implies $n_{1}=n_{2}$, and in this case the hyperdeterminant H_{2} coincides with the classical determinant of the matrix $A_{i_{1} i_{2}}$. Note that for a given set $\left\{n_{1}, \ldots, n_{r}\right\}$ of array dimensions one says that we have the corresponding $\left(n_{1}+1\right) \times \cdots \times\left(n_{r}+1\right)$-hyperdeterminant since the array indices range from 0 to n_{k}. The hyperdeterminant is $S L\left(\mathbb{C}, n_{1}+1\right) \times \cdots \times S L\left(\mathbb{C}, n_{r}+1\right)$-invariant, which means that if one adds to one slice $A_{k, p}=\left\{\left(a_{i_{1} i_{2} \cdots i_{r}}\right)\right.$ with fixed $\left.i_{k}=p\right\}$ another parallel slice $A_{k, q}, q \neq p$, multiplied by some constant λ, the value of H_{r} is unchanged; swapping the slices $A_{k, p}, A_{k, q}$ either leave H_{r} again invariant or changes its sign depending on the parity of the dimensions n_{i}; finally, multiplication of a slice $A_{k, p}$ with a constant λ results in multiplication of the hyperdeterminant by an appropriate power of $\lambda . H_{r}$ is also invariant w.r.t. the transposition of any two indices i_{l}, i_{m} of the hypermatrix $A=\left(a_{i_{1} i_{2} \cdots i_{r}}\right)$.

As we have stated in the introduction, the first nontrivial $2 \times 2 \times 2$-hyperdeterminant (3) was computed by Cayley himself [7]. Amazingly, already the next step, computation of the $2 \times 2 \times 2 \times 2$-hyperdeterminant is very difficult. The problem of computation of an explicit polynomial expression for this case was proposed by I M Gel'fand in his Fall 2005 research seminar at Rutgers University. The monomial expansion of the $2 \times 2 \times 2 \times 2$-hyperdeterminant is related to some combinatorial problems, and was done (using an inductive algorithm of L Schläfli [8]) for the first time in [13], using a dedicated C code; this computation required a serious programming effort since the standard computer algebra systems like Maple can not cope with the intermediate large expressions. The resulting polynomial expression for the $2 \times 2 \times 2 \times$ 2-hyperdeterminant has 2894276 terms, total degree 24 , and has degree 9 w.r.t. each of the array entries $a_{i_{1} i_{2} i_{3} i_{4}}$. The size of this expression in usual text format is around 200 Mb .

In October 2007 we rechecked this computation of the $2 \times 2 \times 2 \times 2$-hyperdeterminant using a free symbolic computation program FORM [19] and the same inductive algorithm of L Schläfli [8]. The computation required 8 h on a 3 GHz processor of one of the SHARCNET nodes (www.sharcnet.ca) and some 800 Mb of temporary disk storage. Due to the efficient design of Form one had no need to write any special low-level code, the standard Form routines are completely sufficient. The obtained expression can be saved either in text format (around 200 Mb) or in the internal binary Form format; both can be used as input to other Form runs and require only around 1 min to be read into a session. Moreover, Form could cope with a straightforward check of the invariance of the obtained hyperdeterminant w.r.t. addition of one slice $A_{k, p}$ multiplied by a symbolic constant λ to another parallel slice $A_{k, q}, q \neq p$.

This more challenging computation still used the usual Form routines and required some 10 h of CPU time and around 200 Gb of temporary disk storage (the size of the intermediate expression reached ~ 800000000 terms!). This may suggest that some other hyperdeterminants of higher size may also be computed using available software and hardware.

Amazingly enough, if one reads the original Cayley papers [7], then a relatively small expression with some 340 terms which Cayley describes as the $2 \times 2 \times 2 \times 2$-hyperdeterminant can be found! A straightforward check shows that this expression enjoys the invariance properties for hyperdeterminants stated above. On the other hand, Proposition 1.6 in [9, p. 447] states that if a polynomial in the entries $a_{i_{1} i_{2} \ldots i_{r}}$ of a hypermatrix A has these invariance properties and meets some extra weak condition on the stars of the monomial powers then it should be divisible by the respective hyperdeterminant of A Cayley's expression does satisfy the necessary invariance conditions; only a few terms do not meet the required extra condition on the stars of the monomial powers, so this statement of Cayley on the explicit form of the $2 \times 2 \times 2 \times 2$-hyperdeterminant is wrong. This was already remarked by Schläfli [8] who gave an inductive algorithm for the computation of hyperdeterminants. Unfortunately, as shown in [10], the Schläfli algorithm works only for very special hyperdeterminants, in particular

Figure 3. Cube K_{3}.

Figure 4. Cube K_{4}.
the only hyperdeterminants with $n_{1}=\cdots=n_{r}=1$ which it can compute are precisely the $2 \times 2 \times 2$ - and $2 \times 2 \times 2 \times 2$-hyperdeterminants. Already for the $2 \times 2 \times 2 \times 2 \times 2$ hyperdeterminant there seems to be no better way to compute the explicit expression other than the elimination procedure given in the definition of hyperdeterminants.

Based on the above symmetry discussion one could adopt other definitions for hyperdeterminants. Historically this resulted in a few other definitions of hyperdeterminants as invariant expressions. Many of them have a much simpler form than the definition we apply. A review of various definitions can be found in [12].

3. The Cayley $2 \times 2 \times 2$-hyperdeterminant as a discrete integrable system and the Principal Minor Assignment Problem

The integrability definition applied in this publication is based on the requirement of consistency which is described in this section in detail for the case of the 3D-hyperdeterminant (3). Suppose we have a 4D-cube K_{4} shown in figure 4 with field values $f_{i j k l}, i, j, k, l \in\{0,1\}$. One should impose the formula (3) on every 3D-face of K_{4}, by fixing one of the indices i, j, k, l, and making it 0 for the faces which we will call below 'initial faces', or respectively 1 for the faces which we will call 'final faces'. Further one needs to fix some mapping from the initial 'standard' 3D-cube shown in figure 3 (with the vertices labeled $f_{i j k}$) onto every one of the eight 3D-faces (for example, $\left\{f_{i 1 k l}\right\}$ on $\left\{x_{2}=1\right\}$). Due to the symmetry properties of the 3D-hyperdeterminant (3) this can be done, for example, using the trivial lexicographic correspondence of the type $f_{i j k} \mapsto f_{i 1 j k}$. The initial data are some arbitrary complex values of the field variables $f_{i j k l}$ assigned to the vertices shown in figure 4 by black circles. Then, using equation (3) imposed on the initial faces we can find the values of the field variables for the last (8th) vertex of the respective initial face, such vertices are shown in figures 3 and 4 as white circles. Obviously since equations (3) for these values are quadratic we obtain two possible values. On the next step we impose (3) to hold on the four final faces using the initial data and the values found in the previous step. From each of the four final 3D-faces we again obtain possible values for the final vertex f_{1111} shown in figure 4 by a small white box. For generic initial data we have on each final face $2^{3}=8$ different choices for the intermediate values (white circles) so we find in principle $8 \times 2=16$ different possible values for f_{1111} from each final face. How many of them coincide among the four final faces?

As we prove below, eight of every 16 values for f_{1111} found for each of the final 3D faces are common. All other $8 \times 4=32$ are in general not shared between the final faces as it has been confirmed by numerical examples.

This result should be considered as the proof of consistency for face formula (3); our considerations below are based on a remarkable result proved in [14].

Let us first formulate the necessary definitions and results of [14]. Suppose we have a real symmetric $n \times n$-matrix $M=\left(m_{i j}\right)$. Its principal minors form a vector of length 2^{n} with entries indexed by subsets I of the set $\{1,2, \ldots, n\}$. Namely, M_{I} denotes the minor of M whose rows and columns are indexed by I. This includes the 0×0-minor $M_{\emptyset}=1$. The famous principal minor assignment problem considers the description of a suitable complete set of algebraic relations among the minors of a generic symmetric $n \times n$-matrix $M=\left(m_{i j}\right)$. The first observation (formula (2)) of [14] consists in the fact that for principal minors of a 3×3 symmetric matrix one has the following relation:

$$
\begin{aligned}
M_{\emptyset}^{2} M_{123}^{2}+M_{1}^{2} & M_{23}^{2}+M_{2}^{2} M_{13}^{2}+M_{3}^{2} M_{12}^{2}+4 M_{\emptyset} M_{12} M_{13} M_{23}+4 M_{1} M_{2} M_{3} M_{123} \\
& -2 M_{\emptyset} M_{1} M_{23} M_{123}-2 M_{\emptyset} M_{2} M_{13} M_{123}-2 M_{\emptyset} M_{3} M_{12} M_{123} \\
& -2 M_{1} M_{2} M_{13} M_{23}-2 M_{1} M_{3} M_{12} M_{23}-2 M_{2} M_{3} M_{12} M_{13}=0 .
\end{aligned}
$$

This obviously gives us Cayley's hyperdeterminant (3) if we interpret every minor M_{I} as the field variable $f_{i_{1} i_{2} i_{3}}$ with $i_{s}=1$ if $s \in I$ and $i_{s}=0$ otherwise, for example $M_{13}=f_{101}$. For the initial vertex we have $f_{000}=M_{\emptyset}=1$. For symmetric matrices M of larger size the $2 \times 2 \times 2$-hyperdeterminantal relations are also fulfilled for 'shifted' principal minors, in our terminology this means that the hyperdeterminant (3) vanishes on every 3D-face of the n-dimensional hypercube with field variables $f_{i_{1} \ldots i_{n}}$ equal to the principal minors M_{I} such that $i_{s}=1$ if $s \in I$ and $i_{s}=0$ otherwise. As a remarkable fact (not necessary to us) we mention that for $d>2$ on any d-dimensional face of this n-dimensional hypercube the corresponding d-dimensional hyperdeterminant also vanishes:

Theorem 1 ([14]). Let $M=\left(m_{i j}\right)$ be a symmetric $n \times n$ matrix. Then the vector M_{*} of all principal minors of M is a common zero of all the hyperdeterminants offormats from $2 \times 2 \times 2$ up to $\underbrace{2 \times 2 \times \cdots \times 2}_{n \text { terms }}$.

For $n \geqslant 2$, the entries of the symmetric matrix $M=\left(m_{i j}\right)$ are determined up to sign by their principal minors of size 1×1 and 2×2 since $m_{i i}=M_{i}, m_{i j}^{2}=M_{i} M_{j}-M_{i j} M_{\emptyset}$. As we see, the value $f_{111}=M_{123}$ for the final vertex is not defined uniquely from the relation (3); the choice of one of the two possible values corresponds to a suitable choice of the signs for the three off-diagonal elements m_{12}, m_{13}, m_{23}. These $2^{3}=8$ sign combinations give only two different values for M_{123}, because changing simultaneously the signs of a certain row and the column symmetric to it we do not change the principal minors of the matrix, so we can fix the signs of m_{12} and m_{13}.

If we take a 4×4 symmetric matrix, all its elements will be defined up to the sign of the off-diagonal elements by the principal minors of size 1×1 and 2×2; this corresponds precisely to the choice of the initial data (black circles) in figure 4. So provided we choose the initial data $f_{i j k l}$ with $f_{0000}=1$, we can find a corresponding 4×4 symmetric matrix with fixed 1×1 and 2×2 minors; the off-diagonal elements of the matrix are fixed up to the signs. So, fixing three signs of the six off-diagonal elements (changing simultaneously the signs of a certain row and the column symmetric to it) we have only three essential sign choices; as the numerical examples show, they really give $2^{3}=8$ different minors $M_{1234}=\operatorname{det} M$. Precisely these eight values should give the eight values for f_{1111} that should coincide after computation of 16 possible candidates for f_{1111} from each of the four final faces from the initial data.

If we choose initial data with $f_{0000} \neq 1, f_{0000} \neq 0$, homogeneity of the face equations (3) allows us to reduce this situation to the case $f_{0000}=1$ considered above. Thus the following statement has been proved:

Theorem 2. Let some generic initial data $\left\{f_{0000}, f_{1000}, f_{0100}, f_{0010}, f_{0001}, f_{1100}, f_{1010}, f_{1001}\right.$, $\left.f_{0110}, f_{0101}, f_{0011}\right\}$ on the cube K_{4} be given. After computation of the two possible values for each of the intermediate vertices $\left\{f_{1110}, f_{1101}, f_{1011}, f_{0111}\right\}$ from the face relations (3) on the respective three-dimensional initial faces, among the sets of 16 possible values of f_{1111} for each if the four final faces, subsets of eight values coincide for all of them. They are equal to the eight possible values of $\operatorname{det} M$ for the symmetric matrices having given 1×1 and 2×2 principal minors corresponding to the initial data for $f_{i j k l}$.

We should remark that in fact one may interpret the results of [16] in the same way: the connection between the principal minors of symmetric matrices and the dCKP equation (without mentioning hyperdeterminants) may actually be found in this paper, with almost the same notation M for the 4×4 symmetric matrix. The link is provided by the matrix composed of 'squared eigenfunctions'. These squared eigenfunctions are symmetric and the simplest algebraic relation between them is relation (2) of [14] interpreted as a superposition principle. Theorem 1 and, e.g., the fact that $\operatorname{det}(M)=f_{1111}$ is a direct consequence of the formulae given at the end of [16].

4. The next step: the $2 \times 2 \times 2 \times 2$-hyperdeterminant and its 5D inconsistency

The definition of hypothetical 5D consistency for the $2 \times 2 \times 2 \times 2$-hyperdeterminant which has degree 9 w.r.t. each of its 16 variables is easily formulated along the lines given in the previous section. So in this case not only the size of the face equations, but also the number of possible choices of the intermediate values $f_{i j k l m}$ with $i+j+k+l+m=4$ for the computation of the final f_{11111} from each of the five final faces of the five-dimensional hypercube K_{5} is dramatically increased.

The strategy of numerical checking the hypothesis of 5D consistency adopted by us involved the following steps.
(1) We assign some random integer values for the initial data $f_{i j k l m}$ with $i+j+k+l+m \leqslant 3$ and use Form to substitute them into the expressions of the $2 \times 2 \times 2 \times 2$-hyperdeterminant on the five initial 4D faces obtaining univariate polynomials for each of the intermediate $f_{01111}, \ldots, f_{11110}$ and output the resulting expressions into a text file for further processing by Reduce and independently by Singular. For initial data being random integers in the range [1, 100], the obtained equations have integer coefficients with approximately 40 decimal digits.
(2) The same substitution of the initial data into the final faces is performed with FORM, resulting in much larger multivariate polynomials for the intermediate values $f_{01111}, \ldots, f_{11110}$ and the final f_{11111}. These polynomials (each has the size of $\sim 360 \mathrm{~Kb}$) are output into a text file for further processing by Reduce and independently by Singular.
(3) The five univariate polynomial equations for the intermediate $f_{01111}, \ldots, f_{11110}$ are solved with a guaranteed precision of 150 digits.
(4) For each one of the 9^{5} combinations of the nine complex roots the following computation is performed.
(a) The set of complex roots for $f_{01111}, \ldots, f_{11110}$ is replaced in the five final face relations obtained on step 2, which makes them univariate polynomials for f_{11111} with complex rounded coefficients.
Starting with a guaranteed precision of 20 digits:
(b) One of the obtained polynomials is solved for f_{11111} and
(c) successively the other four polynomials are solved for f_{11111} as long as there is a non-empty approximate intersection (with a definite relative tolerance, see below) of the sets of roots for the f_{11111} for all the polynomials solved so far.
(d) If all five face relations have at least one common approximate solution then execution continues with step (b) with twice as many guaranteed precise digits, up to a maximum of 80 digits. This was never necessary.

To increase safety, two complex values u, v were only considered NOT to be approximately equal if for p precise digits the difference $u-v$ differed significantly from zero, more precisely if $|u-v| /|u|>10^{-p / 2}$.

The computation performed on the nodes of SHARCNET has shown that no equal values for f_{11111} are obtained from the five final faces. The details of the computation and the code used can be obtained from the authors or downloaded from http://lie.math.brocku.ca/twolf/papers/TsWo2008/.

This results in the conclusion that The $2 \times 2 \times 2 \times 2$-hyperdeterminant is not $5 D$ consistent.
The safety of our numerical inconsistency result is increased by the fact that it is obtained by two completely different computer algebra systems. The Singular package is written in C using an arbitrary precision C library for their numerical computations whereas reduce uses a long number arithmetic implemented in Lisp.

We have also checked that the relatively small expression given by Cayley [7] for the $2 \times 2 \times 2 \times 2$-hyperdeterminant is also 5 D inconsistent.

5. Conclusions

As established in [15, 16] and in section 3, the discrete systems defined by the $2 \times 2 \times 2$ hyperdeterminant can be considered integrable in many ways. It definitely plays a very important role in applications of multilinear algebra in physics, biology and numerics (cf the references given in section 1). Purely geometric interpretation of the consistency condition were given in [18].

On the other hand the systems defined by the $2 \times 2 \times 2 \times 2$-hyperdeterminant seem to be much more complicated, and it does not possess the property of five-dimensional consistency as we have shown in section 4. The potential interpretations of this result are still to be discussed.

Acknowledgments

The authors enjoy the opportunity to thank A Bobenko, O Holtz, B Sturmfels and Yu Suris for fruitful discussions, references to original sources and valuable remarks. For this work facilities of the Shared Hierarchical Academic Research Computing Network (SHARCNET: www.sharcnet.ca) were used. SPT acknowledges partial financial support via SHARCNET Senior Visiting Fellowship Programme during his visit to Brock University in October 2007 where the main part of this work has been completed.

References

[^0][3] Bobenko A I and Suris Yu B 2008 Discrete Differential Geometry. Consistency as Integrability (Graduate Studies in Mathematics, vol 98) (Providence, RI: American Mathematical Society) p 404 (Preliminary version of the book: arXiv:math/0504358v1 [math.DG])
[4] Miyake A and Wadati M 2002 Multipartite entanglement and hyperdeterminants arXiv:quant-ph/0212146 Luque J-G and Thibon J-Y 2003 Polynomial invariants of four qubits Phys. Rev. A 67042303
Luque J-G and Thibon J-Y 2006 Algebraic invariants of five qubits J. Phys. A: Math. Gen. 39 371-7 Lévay P 2006 On the geometry of four-qubit invariants J. Phys. A: Math. Gen. 39 9533-45
[5] Altmann R and Altmann K 2000 Estimating vaccine coverage by using computer algebra Math. Med. Biol. 17 137-46
[6] de Silva V and Lim L-H 2008 Tensor rank and the ill-posedness of the best low-rank approximation problem SIAM J. Matrix Anal. Appl. 30 1084-127
Stegeman A and Ten Berge J M F 2006 Kruskal's condition for uniqueness in Candecomp/Parafac when ranks and k-ranks coincide Comput. Stat. Data Anal. 50 210-20
[7] Cayley A 1845 On the theory of linear transformations Camb. Math. J. 4 193-209
Cayley A 1846 On linear transformations Camb. Dublin Math. J. 1 104-22
Cayley A 1846 Mémoire sur les hyperdéterminants J. Reine Angew. Math. 30 1-37
[8] Schläfli L 1851 Über die Resultante eines Systemes mehrerer algebraischer Gleichungen Denkschr. Akad. Wiss. 4 Nr 24
[9] Gelfand I M, Kapranov M M and Zelevinsky A V 1994 Discriminants, Resultants, and Multidimensional Determinants (Basle: Birkhauser)
[10] Weyman J and Zelevinski A 1996 Singularities of hyperdeterminants Ann. Inst. Fourier 46 591-644
[11] Levi D and Yamilov R I 2009 On a nonlinear integrable difference equation on the square 3D-inconsistent arXiv:0902.2126v1
[12] Sokolov N P 1960 Prostranstvennye Matricy i ih Prilozhenija (in Russian)
[13] Grier D, Huggins P, Sturmfels B and Yu J 2008 The hyperdeterminant and triangulations of the 4-cube Math. Comput. 77 1653-79
[14] Holtz O and Sturmfels B 2007 Hyperdeterminantal relations among symmetric principal minors J. Algebra 316 634-48
[15] Kashaev R 1996 On discrete three-dimensional equations associated with the local Yang-Baxter relation Lett. Math. Phys. 38 389-97
[16] Schief W 2003 Lattice geometry of the discrete Darboux, KP, BKP and CKP equations: Menelaus' and Carnot's theorems J. Nonlinear Math. Phys. 10 (Suppl. 2) 194-208
[17] Tsarev S P and Wolf T 2008 Classification of 3d integrable scalar discrete equations Lett. Math. Phys. 84 31-9 (arXiv:0706.2464)
[18] Doliwa A The C-(symmetric) quadrilateral lattice, its transformations and the algebro-geometric construction arXiv:0710.5820v1
[19] Vermaseren J A M 2000 New features of FORM arXiv:math-ph/0010025, a complete distribution can be downloaded from http://www.nikhef.nl/form/
[20] Reduce A portable general-purpose computer algebra system http://reduce-algebra.sourceforge.net/
[21] Singular A Computer Algebra System for Polynomial Computations http://www.singular.uni-kl.de/index.html

[^0]: [1] Adler V E, Bobenko A I and Suris Yu B 2003 Classification of integrable equations on quad-graphs: the consistency approach Commun. Math. Phys. 233 513-43
 [2] Adler V E, Bobenko A I and Suris Yu B 2009 Discrete nonlinear hyperbolic equations: classification of integrable cases Funct. Anal. Appl. 43 3-21

